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Abstract. In model-based testing, test cases are generated from a spec-
ification model. To avoid an exhaustive search for all possible test cases
that can be obtained, usually an expensive and infeasible activity, test
case generation may be guided by a test selection criterion. The ob-
jective of a test selection criterion is to produce a minimal test suite
and yet effective to reveal faults. However, the choice of a criterion is
not straightforward specially for real-time systems, because most criteria
presented in the literature are general-purpose. Moreover, the relation-
ship between general-purpose and specific criteria for real-time systems
is not clear. In this paper, we investigate the criteria that can be applied
for test case generation in the scope of model-based testing of real-time
systems, specifically of Timed Input-Output Symbolic Transition Sys-
tems (TIOSTS) models. We formalize a family of 19 test selection crite-
ria ordered by strict inclusion relation for TIOSTS models. The family
combines general-purpose data-flow-oriented and transition-based crite-
ria with specific reactive and real-time systems criteria. We also perform
an empirical study to compare the effectiveness of selected criteria. Re-
sults of the empirical study indicate that failure detection capability of
the generated test suite may vary, but differences are not significant for
time failures. We conclude that more effective criteria for the model-
based testing of real-time systems are still needed.

1 Introduction

Model-Based Testing is a testing approach that relies on the design of abstract
models of an application to generate, execute and evaluate tests [10,22,27]. Tt
has been applied with success in industry, with special emphasis in the avionic,
railway and automotive domains [21].

Test case generation algorithms are based on test selection criteria that guide
how to search for test cases and when to stop the test case generation process.
Different test suites can be generated depending on the chosen test selection
criterion [29]. They may vary in size, behavior coverage and failure detection



capability. While it is more likely that larger (and possibly with higher model
coverage) test suites have better failure detection capability than smaller (and
possibly with lower model coverage) ones, they are usually more expensive to
manage and to execute. Therefore, test selection criteria need to establish how
to guarantee the generation of test suites that are ultimately cost-effective.

Real-time systems are reactive systems whose behavior is constrained by
time [18]. They usually combine concurrent execution of processes, consequently
the nature of their failures is complex. The testing of these systems should un-
cover time-related faults that may require specific test cases to be exercised.

Most test selection criteria for real-time systems at model level are based on
structural elements of a model behavior and its data usage [14]. Some specific
test selection criteria for real-time systems have been proposed, such as covering
all clock resets and all guard bounds [12]. However, the choice of a criterion is not
straightforward, because the relationship between general-purpose and specific
criteria for real-time systems is not clear [2].

In this paper, we investigate test selection criteria for real-time systems in
the context of model-based testing. We focus on criteria that can be applied to
transition systems, because they are usually the basis for conformance testing of
real-time systems [17,28]. We use Timed Input-Output Symbolic Transition Sys-
tems (TIOSTS) models [5, 6], where system behavior is modeled as a transition
system with data and time symbolically defined.

This paper makes two contributions. First, we formalize a family of 19 crite-
ria partially ordered by strict inclusion relation for TIOSTS models. The fam-
ily combines TRANSITION-BASED CRITERIA, DATA-FLOW-ORIENTED CRITERIA,
REACTIVE SYSTEMS CRITERIA and REAL-TIME SYSTEMS CRITERIA. We prove
inclusion or incompatibility whenever our family diverges from the known rela-
tionship in other models, because some relation between criteria change when
applied to TIOSTS models.

Second, we conduct a controlled experiment to compare the effectiveness of
selected criteria. The empirical study measures the size, the failure detection ca-
pability and the rate of failures detected by the size of the test suite of different
criteria. In order to conduct the empirical study, we implemented a selection
of criteria from the family using a depth-first search-based algorithm. Statisti-
cal analyses show that the criteria present different failure detection capability,
although, significant differences cannot be observed for time-related failures. Fur-
thermore, current specific criteria for real-time systems lack precision, i.e. they
miss important failures, pointing to the need for further research in this area.

The paper is structured as follows. Section 2 introduces the TIOSTS model
and test selection criteria for model-based testing of real-time systems. Section 3
formalizes a family criteria for TIOSTS. Section 4 presents an empirical study
to compare selected criteria. Section 5 discusses related work. Finally, Section 6
presents concluding remarks along with pointers for further research.



2 Background

This section presents the symbolic model on which this work is based and in-
troduces the concept of test selection criterion in the context of model-based
testing.

2.1 Timed Input-Output Symbolic Transition System Model

Timed Input-Output Symbolic Transition System (TIOSTS) [5,6] is a symbolic
model for real-time systems that handles both data and time. The TIOSTS
model was defined as an extension of two existing models: Timed Automata [3]
and Input-Output Symbolic Transition Systems [15,24]. Basically, a TIOSTS is
an automaton with a finite set of locations where system data and time evolution
are respectively represented by variables and a finite set of clocks. The transitions
of the model are composed of a guard on variables and clocks, an action with
parameters, an assignment of variables, and a set of clocks to reset.

Figure 1 shows an example of TIOSTS that models a machine for refilling a
card for using the subway. Initially, the system is in the Idle location where it
expects the Credit input carrying the desired value to refill, then this value is
saved into the refillValue variable* and balance is initialized to zero.

[clock < 5]
RefillCard!()
Pr[icr:?\sl;uzhlesr]l() {cardBalance := cardBalance + refillValue | clock := 0}
Crint )<

[balance > refillvalue AND|value = balance - refillValue
AND clock < 5]

ReturnChange!(value
[balance = refillValue and clock < 5] J (} )

RefillCard!()
{cardBalance := cardBalance + refillvalue | clock := 0}

Idle > (Receive)

- eceive
Credit?(value) Money?(value)
{refillvalue := value | balance := 0} balance := balance + value | clock := 0

[balance < refillValue AND value = refillValue - balance]
MissingValue!(value)

Fig. 1. TIOSTS model of a refilling machine

From the Receive location to Verify the client informs the amount to be
credited to the card. This value is accumulated in the balance variable and
the clock is set to zero. If the current balance is less than the desired value
to refill, then the Receive location is reached again and the MissingValue
output is emitted for informing the remaining value (the condition value =

4 Action parameters have local scope, thus their values must be stored in variables for
future references.



refillValue — balance contained in the guard means “choose a value for the
value parameter that, with the values of refillValue and balance variables,
satisfies the guard”).

From the Verify location, if the balance is greater than refillValue some
value must be returned to the client in less than 5 time units. After that,
the clock is reset to zero again. Then, the RefillCard output action must
be performed in less than 5 time units and the cardBalance is increased by
refillValue. Otherwise, from Verify, if balance is exactly equals to
refillValue the card must be refilled in less than 5 time units. Finally, from the
Print location, the voucher must be printed in less than 15 time units and Idle
location is reached again. A formal definition of TIOSTS models is presented in
Definition 1 [5].

Definition 1 (TIOSTS). A TIOSTS is a tuple W = (V,P,0,L,1°, X, C,T),
where:

— V is a finite set of typed variables;

— P is a finite set of parameters. For x € V U P, type(x) denotes the type of
z;

— O is the initial condition, a predicate with variables in V;

L is a finite, non-empty set of locations and I° € L is the initial location;

Y = X"UX" is a non-empty, finite alphabet, which is the disjoint union of

a set X7 of input actions and a set X' of output actions. For each action

a € X, its signature sig(a) = (p1,...,pn) 8 a tuple of distinct parameters,

where each p; € P (i=1,...,n);

— C is a finite set of clocks with values in the set of non-negative real numbers,

denoted by R=0;

T is a finite set of transitions. Each transitiont € T is a tuple (l,a,G, A, y,l'),

where:

e [ € L is the origin location of the transition,

e a € X is the action,

o G = GP AGCY is the guard, where GP is a predicate over variables
in V U set(sig(a))>® and G is a clock constraint over C defined as a
conjunction of constraints of the form aftc, where a € C, # € {<, <,
=,>,>}, and c € N,

o A = (AP AC) is the assignment of the transition. For each variable
x €V there is exactly one assignment in AP, of the form x := AP",
where AP is an expression on V U set(sig(a)). A C C is the set of
clocks to be reset,

o y € {lazy, delayable, eager} is the deadline of the transition,

e ' € L is the destination location of the transition. o

The semantics of a TIOSTS is described by Andrade and Machado [5]. Next
we define the concepts of state, path and test case.

5 GP is assumed to be expressed in a theory in which satisfiability is decidable.
5 Let set(j) be the function that converts the tuple j in a set.



Definition 2 (State of TIOSTS). In TIOSTS model, a state is a tuple (I, v, ...,
Upy C1y ey Cm ), Which consists of a location | € L, a specific valuation for all vari-
ables v; € V, and a valuation for all clocks ¢; € C. o

Definition 3 (Path). A path is a finite sequence of transitions (t1,...,tx), k >
1, such that the destination location of transition t; is equal to the origin location
of the transition t;y1 fori=1,2,...k — 1. o

Definition 4 (Test Case). A test case is a deterministic TIOSTS TC =
(Vre, Pre,Orc, Lre, ¢, Xre, Cre, Tre), where Yo = X5 and Yo = X%
(actions are mirrored w.r.t. specification), equipped with three disjoint sets of
verdict locations Pass, Fail, and Inconclusive. Furthermore, each sequence from
the initial location 13 to some verdict location is a path. o

According to Definition 4, the execution of a test case can emit one of three
possible verdicts: Pass, Fail, and Inconclusive. Pass means that some targeted
behavior of the system under test has been reached, Fail means rejection of
the SUT, and Inconclusive means that targeted behavior cannot be reached
anymore.

Figure 2 is a test case for the TIOSTS model of the refilling machine. The test
case aims to exercise the scenario where the system emits the Refi11Card output
when the amount to be credited to the card (value_2) is equal to desired value
to refill (value_1). In this case, the verdict is Pass. If the amount to be credited
to the card (value_2) is less than the desired value to refill (value_1), and the
system emits the MissingValue output with parameter equals to value_ 1 —
value_2, then the verdict is Inconclusive. It is Inconclusive because this behavior
is specified in the model, but it is not the scenario the tester would like to observe
in the test case execution. The same applies to ReturnChange output action of
the test case. All other cases lead to the implicit Fail verdict.

2.2 Test Selection Criteria for Real-Time Systems

In model-based testing, test cases are derived from a model which specifies the
expected behavior of a system under test. A Test Selection Criterion defines
which parts of the system are going to be tested, how often and under what
circumstances they will be tested [29]. Test selection criteria are used for two
main purposes: to measure the adequacy of the test suite with respect to the
level of quality required by the context, and to stop the test generation process
after the criterion is reached [29].

We conducted a systematic literature review to identify studies that address
test selection criteria for real-time systems at model level [2]. We considered
studies that a criterion was used at least as part of a test case generation process
in the scope of transition and state-based systems [1,7,9,12-14,16,17,20, 26, 31].

The results of the review show that most general-purpose test selection cri-
teria may be applied to models of real-time systems. There are also specific
criteria for real-time systems proposed in the literature. However, there is a lack



Credit!(value_1)

Money!(value_2)
{clock := 0} [value_2 > value_1 AND

value_3 = value_2 - value_1 AND

[value_2 < value_1 AND clock < 9]
value_3 = value_1 - value_2] ReturnChange?(value_3)
MissingValue?(value_3) {clock := 0}

[value_2 = value_1 AND clock < 5]
RefillCard?()
{clock := 0}

Fig. 2. A test case for the refilling machine.

of studies that investigate the theoretical and empirical relationship between
criteria. The theoretical relationship could indicate the relative effort to satisfy
a criterion, while the empirical evaluation could compare criteria effectiveness
with respect to failure detection capability.

En-Nouaary [12] proposes a family of test selection criteria ordered by strict
inclusion relation for Timed Input-Output Automata (TIOA). His family com-
bines TRANSITION-BASED CRITERIA, REACTIVE SYSTEMS CRITERIA, and
REAL-TIME SYSTEMS CRITERIA. But data-related criteria are not included
because the TIOA model does not support data abstraction. Conversely, the
TIOSTS model symbolically abstracts both time and data, thus data-related
criteria can be applied to it. Furthermore, to the best of our knowledge, there
is no work on test selection criteria for real-time systems at model level that
evaluate the ability to reveal faults of selected criteria.

3 Towards a Family of Test Selection Criteria for TIOSTS

In this section, we propose a family of test selection criteria for TIOSTS models.
We extend En-Nouaary’s family [12] to include data-related criteria. We choose
to include DATA-FLOW-ORIENTED CRITERIA, because they can be empirically
evaluated with the same failure model employed to compare TRANSITION-BASED
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Fig. 3. Family of test selection criteria ordered by strict inclusion relation for TIOSTS
models.

CRITERIA and REAL-TIME SYSTEMS CRITERIA in the next section. Thus our
proposed family of criteria combines TRANSITION-BASED CRITERIA, REAC-
TIVE SYSTEMS CRITERIA, REAL-TIME SYSTEMS CRITERIA and DATA-FLOW-
ORIENTED CRITERIA. Table 1 describes the criteria we considered in this work.

Test selection criteria are often theoretically compared to each other by three
relations: strict inclusion, equivalence, or incompatibility [23]. The relations are
formalized in Definitions 6, 7 and 8 respectively.

Definition 5 (Inclusion Relation). A criterion ¢; includes a criterion co if
any set of test cases that satisfies ¢ also satisfies ca [23]. o

Definition 6 (Strict Inclusion Relation). A criterion c; strictly includes cq,
denoted by c¢1 = ca, if c¢1 includes co but there is a set of test cases that satisfies
co but does not satisfy c1. Note that this is a transitive relation [23]. o

Definition 7 (Equivalence Relation). A criterion ¢ is equivalent to a cri-
terion co if ¢1 includes co and co includes c;. o

Definition 8 (Incompatible Relation). A criterion c; is incompatible with
a criterion cg if c1 does not include co and co does not include c;. o

Our goal is to produce a sound family of test selection criteria partially
ordered by strict inclusion relation. We do not intend to prove all equivalences
or incompatibilities between criteria. To accomplish this, our strategy is i) to
reuse the proofs of strict inclusion relations from other formalisms if they are
also valid for TIOSTS; ii) to prove new strict inclusion relations resulting from
the combination of classes of criteria, iii) to prove the exclusion of strict inclusion
relations valid for other formalisms but not valid for TIOSTS. The proposed
family is formalized in Theorem 1.

Theorem 1. The family of criteria for TIOSTS is partially ordered by strict
inclusion as shown in Figure 3. Furthermore, ¢y = co iff it is explicitly shown
to be so in Figure 3 or follows from the transitivity of the relationship.



Table 1. Test Selection Criteria for TIOSTS models.

Criterion

Description

Transition-Based Criteria

ALL-LOCATIONS [12,16]
ALL-PATHS [12,14]
ALL-ONE-LOOP-PATHS [29]
ALL-TRANSITIONS [12, 16]
ALL-STATES [1,12,31]

ALL-TRACES [12]

Every location of the model must be exercised by at least one test
case.

Every path of the model must be exercised by at least one test
case.

Every loop-free paths through the model must be exercised, plus
all the paths that loop at least once.

Every transition of the model must be exercised by at least one
test case.

Every state of the model must be exercised by at least one test
case.

Every trace of the model must be included in the test suite.

Data-Flow-Oriented Criteria

ALL-DEFS [29]

ALL-DU-PATHS [29]

ALL-UsEs [29]

DEFINITION CONTEXT [14]

ORDERED CONTEXT [14]

At least one def-use pair(d,, u,) for every definition d, must be
exercised by at least one test case, i.e. at least one path from every
definition to one of its use must be covered.

Every path for all def-use pairs(d,, u,) must be exercised by at
least one test case, i.e. all paths from every definition d, to every
use u, must be covered.

Every def-use pairs(d,, u,) must be exercised by at least one test
case, i.e. at least one path from every definition d, to every use
u, must be covered.

All paths from every context of definition of variable z to the
definition of variable x must be exercised by at least one test
case. The context of definition of the variable  are the transitions
where the variables used to define the value of z are defined.

Similar to DEFINITION CONTEXT, but the transitions context are
listed in the order of their definitions.

Reactive Systems Criteria

ALL-INPUTS [9,12]

ALL-OuTPUTS [9,12]

Every input action of the model must be exercised by at least one
test case.

Every output action of the model must be exercised by at least
one test case.

Real-Time Systems Criteria

ALL-CLOCK-BOUNDS [12]

ALL-CLOCK-GUARD-BOUNDS [12]

ALL-CLOCK-VALUATIONS [12]
ALL-CLOCK-RESETS [12]

ALL-CLOCK-ZONES [12, 26]

ALL-TIME-CONSTRAINTS [12]

Every clock bound of the model must be exercised by at least one
test case. The bound of a clock is the highest value that a clock
can assume.

Every clock guard bound of the model must be exercised by at
least one test case. This criterion is similar to ALL-CLOCK-BOUNDS
but considering only the time guards.

Every clock valuation of the model must be exercised by at least
one test case.

Every clock reset of the model must be exercised by at least one
test.

Every clock zone of the model must be visited through at least
one test case, i.e. all transitions with clock resets or time guards
must be covered.

Every time guard of the model must be exercised by at least one
test case.

Note: The criteria in this table are defined in terms of satisfiable paths, i.e. all data and time guards

in a path must be satisfiable.



Fig.4. A TIOSTS model to assist in the proof of ALL-DU-PATHS #
ALL-TRANSITIONS.

Proof. We need to prove the relations ALL-STATES = ALL-LOCATIONS, ALL-
ONE-LOOP-PATHS = ALL-TRANSITIONS, ALL-TRANSITIONS = ALL-CLOCK-
RESETS, and ALL-DU-PATHS # ALL-TRANSITIONS. All other relations can be
easily checked based on proofs already presented in the literature [12,23,29,32].

1. ALL-STATES = ALL-LOCATIONS. Proof follows directly from the defini-
tions of the criteria. We recap that a state of a TIOSTS consists of a lo-
cation, a specific valuation for all variables, and a valuation for all clocks.
Since the ALL-STATES criterion demands the all states to be covered, thus
ALL-STATES = ALL-LOCATIONS.

2. ALL-ONE-LOOP-PATHS = ALL-TRANSITIONS. Proof follows directly from
the definitions of the criteria. The ALL-ONE-LOOP-PATHS criterion demands
that all loop-free paths to be covered plus all loops at least one lap. Since all
transitions must be either in a loop-free path or in a loop, thus ALL-ONE-
LoopP-PATHS = ALL-TRANSITIONS.

3. ALL-TRANSITIONS = ALL-CLOCK-RESETS. Proof follows directly from the
definitions of the criteria. A clock reset happens within the assignment of a
transition. The ALL-TRANSITIONS criterion demand that all transitions to be
covered. Since all transitions with clock resets are a subset of all transitions,
thus ALL-TRANSITIONS = ALL-CLOCK-RESETS.

4. ALL-DU-PATHS % ALL-TRANSITIONS. Proof by contradiction. Let’s assume
that ALL-DU-PATHS = ALL-TRANSITIONS. Consider the TIOSTS model in
the Figure 4. The model has two def-use pairs: {(q1, [true], a!, {v := 0}, 0, ¢2),
(qas [p = v}’ f!(p)vmv 0, qﬁ)} and {(q27 [true], b?, {U = 1}7 0, q3), (qa, [p = U],
fi(p),0,0,q6)}. The test cases” {{a! — ¢? — d? — fl(p)}, {a! = b? = d? —
fl(p)}} satisfy the ALL-DU-PATHS criterion for this model, but the transi-
tions (g3, true, e?,0,0, q5) and (gs, true, g!, 0,0, g¢) are not covered. Thus our
assumption is incorrect, and ALL-DU-PATHS % ALL-TRANSITIONS. a

It is important to remark that the relation ALL-USES = ALL-
TRANSITIONS does not hold for TIOSTS as it does for other models [23]. In fact,
even ALL-DU-PATHS A ALL-TRANSITIONS for TIOSTS. This happens because
a transition in TIOSTS may have neither a definition nor a use of a variable.
Thus not all transitions will be covered by the ALL-DU-PATHS criterion.

" The last transition in the test case leads to the Accept location.



4 Empirical Study

In this section we present a controlled experiment to compare the effectiveness
of selected criteria. We follow the guidelines given by Wohlin, Runeson, Host
and Ohlsson [30]. The main goal of the empirical study is to investigate test
selection criteria for real-time systems by observing the test suite generated
from TIOSTS models according to a given criterion with respect to their size and
failure detection capability from the point of view of the tester in the context
of model-based testing. The research hypothesis is that different criteria may
generate different suites of different sizes that may reveal a number of different
failures.

Planning. We conducted this experiment in a research laboratory — an of-
fline study with a specific context. As independent variable, we have the test
selection criterion. The treatments are: ALL-ONE-LoOP-PATHS (AOLP), ALL-
TRANSITIONS (AT), ALL-LOCATIONS (AL), ALL-CLOCK-ZONES (ACZ), ALL-
CLock-RESETS (ACR), ALL-DU-PaTHS (ADUP), ALL-UsEs (AU), and ALL-
DEFS (AD). Instead of evaluating all criteria of the family, we choose to evaluate
the most used criteria found in our literature review. The selected criteria are
representative of transition, time and data-related criteria.

The dependent variables are: i) size of the generated test suites (Size); and
ii) failure detection capability, measured as the number of different failures that
can be detected (Failure). From these dependent variables, for each treatment
and object, we computed two values: i) the percentage of failure, defined as
the relation between the Failure value and the total of possible failures; ii)
the density of failure as the relation between the Failure and the Size values.
For the sake of simplicity, the hypotheses of the study are formulated based on
these measures only as follows. Let % failure; = % and density; =
%7 where i is a test criterion and Failure;, Size; are the average value
of the correspondent dependent variables for each of the considered objects.
Based on statistical testing, the null hypothesis is defined as the equality of all
criteria, whereas the alternative hypothesis is defined as the difference between
all criteria.

Regarding experimental design, this study consists of one factor and eight
levels (eight test criteria) with six repetitions corresponding to six different mod-
els from three applications of real-time systems presented in the literature. We
considered a confidence of 95% when deciding on hypothesis rejection. As input,
for each criterion, only TIOSTS models are required. Dependent variables are
computed automatically. Therefore, there is no human intervention and no sub-
jects to be considered. Since there are no random choices involved, there is no
need to compute the number of replications required.

The objects (TIOSTS models) were obtained from 3 different applications: i)
Alarm System — Monitoring and actuation system that can detect invasion and
also the presence of intruders in a building through door, window and movement
sensors [25]; ii) Aircraft Attack System — System that controls attacks to specific
land targets and also threat detection from a missile or another aircraft [19]; and



iii) Philips Audio Protocol — Protocol that defines control message exchanging
for audio and video devices [8]. Moreover, collisions detection and delivery failure
are handled. From these applications, we created six models and used them
as input to the test case generator we implemented using a depth-first search-
based algorithm. Table 2 presents the metrics of number of locations, transitions,
transitions with time constraints, and transitions with data constraints of the
considered models.

Table 2. Metrics of real-time system models used in the empirical study.

Model Locations Transitions Trans. w/ time constraints Trans. w/ data constraints
Alarm1 7 9 6 7
Alarm?2 10 23 13 19
Aircraftl 11 13 8 6
Aircraft2 14 35 20 28
Protocoll 17 29 10 25
Protocol2 17 37 18 25

Notes. Alarml: Alarm System without power failure. Alarm2: Simplified version of Alarml with
power failure treatment. Aircraftl: Aircraft Attack System functionality only. Aircraft2: Simplified
version of Aircraftl with threat detection functionality. Protocoll: System without failure recovery.
Protocol2: Simplified version of Protocoll with failure recovery.

It is often difficult to associate a failure with a single fault at code level,
because a failure may be caused by one or more faults. Therefore, for the purpose
of this study and also to avoid undesired effects in the results, instead of the
number of faults, we opt to measure failures — the number of different failures
that can be detected by at least one test case in a given test suite. To allow
for a reasonable sample of failures, we defined a failure model that contains
potential failures which can be detected in a real-time system, particularly as a
result of violation of time constraints. This model was based on previous studies
such as the one performed by En-Nouaary, Khendek and Dssouli [11], and by
Andrade and Machado [4]. Two basic types of failures were considered: time
and behavior. The former is necessarily connected to non-conformity with time
constraints, whereas the latter are more related to behavior non-conformity. For
the sake of space, Table 3 presents only considered failures for the Alarm2 model.
Note that there is a different distribution of faults of the two types. The reason
is that we do not aim to control this factor so that the distribution achieved is
mostly a consequence of potential failures identified by considering each model.

Study execution was conducted according to the following process: 1) For
each input model, a test suite was generated for each of the criteria; 2) For each
test suite, each test case was analysed to determine whether it can fail according
to the failure model; 3) For each test suite, failures from the failure model were
marked when covered by the suite; 4) Data on study variables was collected; 5)
%failure and density values were computed and analysis of results conducted.



Table 3. Failure Model for Alarm2 model.

Failure Type Description

Fo4 Time When power failure occurs, sensor status does not change.

F05 Time When power failure is detected, the system does not change power supply on
time.

F06 Behavior After handling power failure, system does not resume execution as expected.

FO7 Time When power failure occurs, status change of movement sensor is not detected.

F08 Time ‘When power failure occurs, status change of window sensor is not detected.

F09 Behavior After power failure handling, system does not detect an invaded room.

F10 Behavior After power failure handling, alarm starts without invasion detection.

Threats to Validity. Measures were rigorously taken regarding data treatment
and assumption with a confidence level of 95% that is usually applied in com-
paring studies. Also, to avoid the influence on the kind of applications in the
obtained results, we have chosen specifications constructed by different authors
— the models have different structural elements as illustrated in Table 2. More-
over, correctness of the implementation of the algorithms is critical to assess
whether the results are reliable. Therefore, validation was throughly performed
and, to avoid an inconsistent generation of suites, all algorithms are based on the
same basic strategy — a depth-first search — where each criterion is applied as
a stop condition. Furthermore, models used in the study may not be representa-
tive of all kinds of real-time systems, therefore, results can only be interpreted
as specific. However, it is important to remark that they may be considered as
an evidence since results confirm properties already known, particularly for the
general criteria.

Results and Analysis. Data collected in the study as well as test cases generated
can be downloaded from the study web site®. Figure 5 shows the box plots for
the percentage of failure values and Figure 6 shows the box plot for the density
of failures values. As the values do not follow a normal distribution, the Kruskal-
Wallis test was performed and we obtained a p-value of 0.0388 for the percentage
of failures. This means that we can reject the null hypotheses: when compared
together the criteria present a different failure detection capability. However, if
we consider only “Time” failures, the p-value would be 0.1487. Therefore, we
can observe that, for the considered criteria, significant differences of capability
for this kind of failure cannot be observed.

On the other hand, for the density of failure values, by applying the Kruskal-
Wallis test we obtained a p-value of 0.0670. This means that we cannot reject the
null hypotheses: we cannot observe a significant difference on the failure density
for the considered criteria. It is also important to mention that no significant
correlation between the values of size and failure has been observed for any of
the considered criteria.

8 https://sites.google.com/a/computacao.ufcg.edu.br/rtscoverage/
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General Remarks. From this study, we can observe that the more general crite-
ria such as ALL-ONE-LOOP-PATHS and ALL-TRANSITIONS as well as ALL-DU-
PaTHs and ALL-USES present a better failure coverage even when only time
failures are considered. The reason is that more test cases are generated when
these criteria are considered. However, they do not always present the best fail-
ure density capacity. Which means that a number of test cases may be either
useless or redundant for the purpose of detecting the considered failures. From
the general criteria, ALL-USES (followed by ALL-DU-PATHS) seems to present
more consistently the best relation between size and failure detection capabil-
ity. The reason is that they can most effectively explore the relation between
events that are related to a given variable, whereas the structural criteria such
as ALL-TRANSITIONS and ALL-LOCATIONS can miss certain combinations. The
clock related criteria ALL-CLOCK-ZONES and ALL-CLOCK-RESETS present con-
siderably smaller test suites and good density failure capacity, particularly the
second one. However, not all failures are covered, even time related ones. Conse-
quently, these criteria may only be considered under severe project constraints.
Otherwise, one might consider using both of them together in order to improve
failure detection capability and still keep a reasonable failure density.

5 Related Work

Test selection criteria for different kinds of models of real-time systems have
already been investigated in the literature. But most of works just describe a
criterion or a set of criteria without proper theoretical and empirical evaluation.

En-Nouaary [12] proposes a family of test selection criteria ordered by strict
inclusion relation criteria for TIOA models. Our proposal is an extension to his
family including data-related criteria for TIOSTS models. We refine the relation
between ALL-CLOCK-RESETS and the class of TRANSITION-BASED COVERAGE
criteria. In his family, ALL-PATHS = ALL-CLOCK-RESETS, but we prove that
the narrow relation ALL-TRANSITIONS = ALL-CLOCK-RESETS is true too. We
introduce the relation ALL-STATES = ALL-LOCATIONS that was missing. En-
Nouaary’s family has neither the ALL-ONE-LOOP-PATHS criterion nor the class



of DATA-FLOW-ORIENTED COVERAGE criteria. We introduce them below the
ALL-PATHS criterion. Conversely, our family does not have the ALL-CLOCK-
REGIONS criterion, because TIOSTS uses zones instead of regions. Finally, only
we evaluate empirically the failure detection capability of eight criteria.

Zhu, Hall and May [32] surveys the literature for test selection criteria at
source code level. They present several criteria applicable to unit testing, com-
pare them using the strict inclusion relation and provide an axiomatic study of
the properties of criteria. Our work is close to theirs because we also compare
test selection criteria using the strict inclusion relation. But we work at model
level instead of source code level, and we also perform an empirical study to
compare selected criteria.

6 Concluding Remarks

In this paper we presented test selection criteria that can be applied to symbolic
transition models of real-time systems, particularly, the TIOSTS model.

We investigated the literature for test selection criteria applicable to mod-
els of real-time systems. Next we selected the ones applicable to TIOSTS and
formalized a family of 19 test selection criteria partially ordered by the strict
inclusion relation.

We evaluated 8 criteria in an empirical study with six TIOSTS models. Our
results showed that, even though there are differences on the criteria related to
size and failure detection capability, the differences were not significant, partic-
ularly when considering time-related failures and cost-effectiveness measured as
the rate of size by the number of failures.

In general, we can observe that current specific available criteria are still im-
precise, because a number of failures were missed. General criteria were precise,
but test suites were large, with a high percentage of test cases that did not fail.
Therefore, we can conclude that more effective criteria for the model-based test-
ing of real-time systems are still needed, particularly for symbolic models such
as TIOSTS.

As future works, we plan to extend this study to include more test selec-
tion criteria, specially the CONTROL-FLOW-ORIENTED CRITERIA which exer-
cise data and time guards thoroughly. Based on the analysis of advantages and
weakness of the criteria in a new empirical study, we intend to propose more
precise and effective criteria for TIOSTS.
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