
Recommending Experts Using Communication History 
 

Alan Moraes, Eduardo Silva 
Department of Informatics 

Federal University of Paraíba  
João Pessoa, PB, Brazil 

alan@di.ufpb.br, eduvfsilva@di.ufpb.br 

Cleyton da Trindade, Yuri Barbosa,  
Silvio Meira 

Center of Informatics 
Federal University of Pernambuco  

Recife, PE, Brazil 
cct@cin.ufpe.br, yamb@cin.ufpe.br, srlm@cin.ufpe.br 

 
ABSTRACT 
In distributed software development the communication is 
inefficient because of geographical and temporal distances, 
affecting the team’s performance and awareness. The low level of 
awareness makes hard the task of finding the expert of a piece of 
source code, delaying the implementation whenever a developer 
needs help. To identify and to recommend the people with right 
knowledge to people in trouble during the implementation can 
improve the collaboration and awareness of the team because it 
can reduce the waiting time for an answer, since the expert can be 
contacted directly. In this paper we propose recommender system 
for expert location with the aim to reduce delays of finding the 
right person whenever somebody needs assistance during coding. 
Our approach uses the communication history of the project (the 
developer’s mailing list) in addition to usual source code history. 
We also present results which show the practical potential of our 
approach. 

Categories and Subject Descriptors 
K.6.1 [Management of Computing and Information Systems]: 
Project and People Management – staffing.  

General Terms 
Algorithms, Experimentation, Human Factors. 

Keywords 
Expert Recommender System, Knowledge Management, 
Distributed Software Development, Global Software Engineering 

1. INTRODUCTION 
In today’s world, software development is increasingly spread 
across national and geographic boundaries. The companies 
involved in distributed software development are seeking mainly 
to lower costs, to access skilled resources and the business 
advantages of proximity to the market [1].  

But the advantages do not come without drawbacks. During the 
software development, team members typically share and 
exchange knowledge about their work interacting constantly with 
others developers [3][8]. Examining the communication process 

in distributed teams, we note the lack of opportunities for 
synchronous interactions that naturally occur in co-located 
development, making difficult to share the knowledge of the 
software under development itself [9].  

The lack of deep and confident knowledge of the software itself 
could potentially affect negatively the team’s productivity. This 
problem is clearly perceived whenever somebody needs help 
during the implementation of a piece of source code from 
someone yet unknown and remotely located, because the access to 
remote team members and the synchronous communication 
options are often restricted. These limitations delay the starting of 
the collaboration process among the team members and make 
hard to find the source code expert [2].  

As pointed in the literature, the problem of expert location is a 
real challenge distributed teams face every day [2][3][4]. To 
identify and to recommend the people with right knowledge to 
people in trouble during the implementation can improve the 
collaboration and awareness of the team because it can reduce the 
waiting time for an answer, since the expert can be contacted 
directly. Thus people, their specialties and their responsibilities 
become clearer to each of the developers, in this way contributing 
to more effective communication and then possibly improving the 
team’s productivity. Quality expert recommendation systems can 
supply an important part of the awareness lost due geographical 
and temporal distances. 

Despite the fact of poor quality of the communication in 
distributed teams, there is still a lot of communication happening 
in various channels, such as mailing lists, version management 
systems, bug tracking systems and so on. To the best of our 
knowledge, none of the expert recommender system uses the 
mailing list content to recommend source code experts.  

So our research questions are: (1) Can we recommend only using 
the project communication history? (2) Can we to improve the 
recommendation quality by using the project communication 
history in addition to source code history? 

In this paper we propose recommender system for expert location 
with the aim to reduce delays of finding the right person whenever 
somebody needs assistance during coding. Our approach uses the 
communication history of the project (the developer’s mailing list) 
in addition to usual source code history. In the sections that 
follow, we present the related works, our approach and its 
evaluation through an experiment, and the final remarks.  

2. RELATED WORKS 
The Expertise Browser [19] uses experience atoms (EA), basic 
units of experience, as the basis for recommending experts. 
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Experience atoms are created by mining the version control 
system for the author of each file revision and the changes made 
to the file. Rules of thumb were applied to identifying candidates 
which had expertise on a particular software project and, more 
specifically, a piece of source code. A simple counting of 
experience atoms in question is then used to determine the 
experience in that area. 
Expert Finder [6] is a tool to locating an expert through the use of 
existing organizational information. In practice this information is 
the documentation generated during a project or similar activity. 
Expertise models are created using text modeling algorithms 
based on the vector space model to analyze the documents. There 
are filters that receive the results of analysis and select the people 
most related with a specific document. 
Expertise Recommender [7] uses software artifacts to recommend 
experts to people asking for help. The tool uses both past 
interacting between the people in the project and the artifacts 
history. The recommendation is done after filtering by 
organizational, social and personal preference criteria. 
STeP_IN [5] recommend a set of developers with expertise in a 
specific method of a Java source code. The set of experts is based 
on the analysis of the source code and the contacts in the mailbox 
of each developer. The tool recommends the developers that have 
some usage of the method, and also recommends archived 
discussions about a specific piece of source code but did not use 
the content of the archived discussion to recommend the experts. 
None of the approaches indeed analyze the content of the 
communication among team members of the project which we 
find could be very valuable.  Our approach analysis the content of 
communication to improve the usual recommendations based on 
the source code history and the relationship (technical 
dependency) between the source code. 

3. CONSCIUS EXPERT RECOMMENDER 
SYSTEM  
Conscius uses the source code, its history, the project 
documentation (javadoc) and the developer’s mailing list archives 
to recommend source code experts. Differently of Ye and 
colleagues, that use the mail archives only to build a social 
network for each developer and recommend people inside it, our 
tool analyses the content of each email in the mailing list to 
identify its subject and related source code. 

The mailing list archive is very valuable because the developers 
tend to write about things they are working on or have knowledge 
about. Using mining algorithms we can relate the emails to 
documentation or source code. 

From the inputs we build the following relationships:  (1) 
developer–source code, from the source code history; (2) source 
code – source code, from the technical dependency between 
them; (3) developer – developer, from the threads of the mailing 
list; and (4) documentation – source code, from the 
documentation.  

The chosen inputs can indicate the knowledge owners from these 
elements since its inception. The relationship among the projects 
activities, its artifacts and the communication supply to Conscius 
the needed information to infer who is the expert in each part 
(package, class, method) of the software.   

3.1 Approach 
Instead of write to mailing list seeking for help, the user writes the 
message in the Conscius tool. Our tool looks for referenced 
classes in the message and finds classes depending on those. 
The Classifier component identifies the keywords in a Javadoc or 
message ignoring the stopwords and invalid characters [10]. It 
computes the frequency of each keyword on the text.  
The Knowledge component receives the list of keywords from the 
Classifier and analyzes and associates them with one top-level 
Javadoc package. This component does automatic classification 
using the technique of fuzzy similarity described by Galho [11] to 
determine the score of similarity among the list of keywords from 
one message and the list of keywords from one Javadoc package. 
We compute the equity score (gi) for each common keyword 
between the two lists (from the message and from the Javadoc 
packages) with the Formula 1. The parameters a and b are the 
frequency of the common keyword in each list. The resulting 
score must be in the interval [0,1]. Values upper than 1 are 
normalized to 1; values lower than 0 are normalized to 0. 

 

Where: 
 

 
 

Formula 1. Equity score [11] 
After the end of the computation of equity score among the 
keywords, we compute the similarity score between the message 
and the top-level Javadoc package with the Formula 2. 

 

Where: 
gs is the similarity score between X and Y. 
gi is the equity between the weights of h keyword (weight a for 
document X and b for document Y); 
h is an index for the commons keywords; 
k is the total number of common keywords. 

Formula 2. Similarity score [11] 
This computation is repeated for each top-level Javadoc package 
in the project. The package with the highest similarity score is 
chosen. For now on, we are going to refer to this package as the 
knowledge of the message. 
The Recommender component identifies the people most 
qualified to reply the original message from the user. The 
component searches the users that sent emails with the requested 
knowledge (identified in the step above) and computes his 
communication score. The developer increases his score for each 
message containing the knowledge. We call this C Heuristic. 
The next step in the Recommender component is to compute the 
development score of the developers in each class referenced in 
the message and each class that depends on them. The developer 
increases his score for each commit on any these classes in the 
source code version control system. This as an extension to “Line 
10 Rule” of McDonald and Ackerman [16] and we call this 
heuristic D Heuristic. 
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The final score for each developer is the sum of the 
communication score and the development score. The developers 
with highest score are recommended as experts and receive the 
original message. 

4. PRELIMINARY EVALUATION 
The experiment planning followed the model proposed by Wohlin 
and colleagues [12] and adapted by Brito [13]. There are five 
activities: definition, planning, operation, analysis and 
interpretation, and presentation. 

4.1 Definition 
The goal of this experiment is to analyze the Conscius tool for the 
purpose of evaluating it with respect to its recommendation 
efficiency of the tool from the point of view of developers looking 
for help in the context of implementation phase of distributed 
software development projects.     

4.2 Planning 
The purpose of the experiment is to assess the viability to use the 
project communication to recommend experts for distributed 
software development. The Apache Lucene-Java was chosen 
because it’s written in Java, is open source software and has its 
developers spread worldwide.  

4.2.1 Subjects 
All the developers that sent at least one email to the developer’s 
mailing list of the project. 

4.2.2 Hypotheses  
Q1. Does the tool recommend efficiently using only the project 
communication history?  
Q2. Does the tool improve the recommendation quality by using 
the project communication history in addition to source code 
history?  
Three metrics where collected to assess the quality of the 
recommendations of the tool: 
M1. Precision: the number of correct recommendations of the 
tool divided by the total number of recommendations of the tool 
[14]; 
M2. Recall: the number of correct recommendations of the tool 
divided by the number of people which actually replied the 
message in the mailing list [14]. 
M3. Accuracy: the number of the set of recommendations with at 
least one correct recommendation divided by the total number of 
the set of recommendations [15]. 
The Q1 is answered comparing the values of precision, recall and 
accuracy from C Heuristic and the values of D Heuristic. In the 
same way Q2 is answered comparing the values of precision, 
recall and accuracy from C and D Heuristics combined and the 
values of C Heuristic. 

4.2.3 Independent variables 
The independent variables are the tool, the mailing list archive, 
the source code and the source code history.  

4.2.4 Dependent Variable 
The dependent variable is the quality of the recommendation of 
the tool. The quality will be measured through the metrics 
precision, recall and accuracy. 

4.2.5 Internal validity 
The mailing list has the problem that not all emails sent are 
directly related to questions about the implementation nor all 
repliers are truly experts on the email subject, or the emails do not 
have enough text to allow the identification of the correct 
knowledge. This is minimized because we will be using a big 
quantity of emails (6 months of archives) and this quantity 
guarantees good internal validity.  

4.2.6 External validity 
In this experiment the results may be affected by the chosen 
project because of the nature of the open source software 
development, where participants are free to contribute whenever 
they are willing to do so, differently from the enterprise scenario. 
However the external validity of the study is considered sufficient 
to assess the quality of the recommendations of the tool. The 
experiment replication depends only from the necessary inputs. 

4.2.7 Conclusion validity  
The conclusions will be draw by the use of analysis of precision, 
recall and accuracy of the recommendations. 

4.2.8 Instrumentation 
The inputs of the experiment were the developer’s mailing list 
archives, the source code and its history in the versioning control 
system (VCS), and the Javadoc. There were 6.327 emails sent 
from 292 different participants in the year 2008. Among the 
participants 17 of them had at least one commit in the VCS. The 
VCS had 10.764 records from September 2001 to July 2009.                 

4.3 Operation 
We selected all the threads in the mailing list from January 2009 
to June 2009 with at least one reply. The selected threads (375) 
where grouped by months. All the threads accounts for 1187 
emails including questions (the first email in thread) and replies. 
In order to also experiment the evolution of the software 
implementation together with communication made about it, six 
versions of source code, representing each month above, where 
extracted from the VCS. In order to Conscius recommend the 
experts, the questions and the source code are from the same 
month. 
We run three configurations of Conscius varying the enabled 
heuristics. The first configuration had the two heuristics enabled 
as described in the section 3.1. The second configuration had the 
C Heuristic disabled and D Heuristic enabled, so the 
communication score was always 0. The third configuration had 
the C Heuristic enabled and D Heuristic disabled, so the 
development score was always zero. In all the runs the tool always 
recommended three experts. 

5. ANALYSIS AND INTERPRETATION  
At the end of the experiment execution the recommendations of 
the tool where collected to compute the three metrics – precision, 
recall and accuracy.  

5.1 Assessing the quality of recommendations 
for each heuristic 
The purpose of this analysis is to assess whether the 
communication is more relevant than the VCS history for 
identifying and recommending experts. The table 1 shows the 
mean values of the metrics collected during the operation. 
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Table 1 – Comparing the C and D Heuristics  

 C Heuristic D Heuristic 

Precision 27,38% 20,71% 

Recall  46,06% 33,73% 

Accuracy 68,53% 54,13% 

 
All the values of the C Heuristic for precision, recall and accuracy 
are higher than the values of the D Heuristic, thus Q1 is true. A 
possible explanation is that the D Heuristic could be too simple 
but it demonstrated to be quite competitive in comparison with 
some others algorithms [17].  

5.2 Improving the quality of recommendation 
The purpose of this analysis is to assess the strength of combining 
both heuristics to recommend the experts as described in section 
3.1. The table 2 shows the mean values of the metrics collected.     

Table 2 – Comparing the combined heuristics  
against the D Heuristics  

 C + D Heuristics  D Heuristic 

Precision 27,29% 20,71% 

Recall  46,49% 33,73% 

Accuracy 69,07% 54,13% 

 
The results for the combined heuristics are also higher than the D 
Heuristics alone, thus Q2 is also true. Surprisingly the results of 
the combined heuristics did not improve the results of the C 
Heuristic alone in the previous section as we intuitively expected. 
We believe this occurs because of the way we combine the scores 
of C and D Heuristics. At least the results did not go worse. 

6. CONCLUSION AND FUTURE WORKS 
The proposed tool Conscius can find the expert in the source code 
level from the descriptions of faced difficulties during the 
implementation of the software, the source code and its history, 
and mainly from the communication history and its content. We 
believe that distributed teams can improve their communication 
and awareness with this tool because they can easily locate the 
right person to talk. 

Our experiment showed evidence of the potential value of 
communication content as a source to expert location. The results 
even overcome results relying only on the source code history. 
We are planning to contact the Apache Lucene-Java’s developers 
to check the results with them, so we can assess their opinions on 
the quality and utility of the recommendations. 

This evidence enables us to generate new hypotheses about the 
value of the content already available in other textual sources such 
as bug reports and wikis. Future works also include more 
exploration on the potential of email communication as a source 
for expert location, such as using metrics of social network 
analysis or more elaborated sociotechnical analysis – the social 
call graph – to improve our heuristics [18]. 

The current design of the tool only allows the message be 
classified by one knowledge. We did not have enough time to 
analyze all 7500 email messages in the experiment but we 
presume a part of unsuccessful recommendation were because our 

design limitation. We are also working to improve this area to 
allow multiple classifications. 
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