
Recommending Experts Using Communication History

Alan Moraes, Eduardo Silva
Department of Informatics

Federal University of Paraíba
João Pessoa, PB, Brazil

alan@di.ufpb.br, eduvfsilva@di.ufpb.br

Cleyton da Trindade, Yuri Barbosa,
Silvio Meira

Center of Informatics
Federal University of Pernambuco

Recife, PE, Brazil
cct@cin.ufpe.br, yamb@cin.ufpe.br, srlm@cin.ufpe.br

ABSTRACT
In distributed software development the communication is
inefficient because of geographical and temporal distances,
affecting the team’s performance and awareness. The low level of
awareness makes hard the task of finding the expert of a piece of
source code, delaying the implementation whenever a developer
needs help. To identify and to recommend the people with right
knowledge to people in trouble during the implementation can
improve the collaboration and awareness of the team because it
can reduce the waiting time for an answer, since the expert can be
contacted directly. In this paper we propose recommender system
for expert location with the aim to reduce delays of finding the
right person whenever somebody needs assistance during coding.
Our approach uses the communication history of the project (the
developer’s mailing list) in addition to usual source code history.
We also present results which show the practical potential of our
approach.

Categories and Subject Descriptors
K.6.1 [Management of Computing and Information Systems]:
Project and People Management – staffing.

General Terms
Algorithms, Experimentation, Human Factors.

Keywords
Expert Recommender System, Knowledge Management,
Distributed Software Development, Global Software Engineering

1. INTRODUCTION
In today’s world, software development is increasingly spread
across national and geographic boundaries. The companies
involved in distributed software development are seeking mainly
to lower costs, to access skilled resources and the business
advantages of proximity to the market [1].

But the advantages do not come without drawbacks. During the
software development, team members typically share and
exchange knowledge about their work interacting constantly with
others developers [3][8]. Examining the communication process

in distributed teams, we note the lack of opportunities for
synchronous interactions that naturally occur in co-located
development, making difficult to share the knowledge of the
software under development itself [9].

The lack of deep and confident knowledge of the software itself
could potentially affect negatively the team’s productivity. This
problem is clearly perceived whenever somebody needs help
during the implementation of a piece of source code from
someone yet unknown and remotely located, because the access to
remote team members and the synchronous communication
options are often restricted. These limitations delay the starting of
the collaboration process among the team members and make
hard to find the source code expert [2].

As pointed in the literature, the problem of expert location is a
real challenge distributed teams face every day [2][3][4]. To
identify and to recommend the people with right knowledge to
people in trouble during the implementation can improve the
collaboration and awareness of the team because it can reduce the
waiting time for an answer, since the expert can be contacted
directly. Thus people, their specialties and their responsibilities
become clearer to each of the developers, in this way contributing
to more effective communication and then possibly improving the
team’s productivity. Quality expert recommendation systems can
supply an important part of the awareness lost due geographical
and temporal distances.

Despite the fact of poor quality of the communication in
distributed teams, there is still a lot of communication happening
in various channels, such as mailing lists, version management
systems, bug tracking systems and so on. To the best of our
knowledge, none of the expert recommender system uses the
mailing list content to recommend source code experts.

So our research questions are: (1) Can we recommend only using
the project communication history? (2) Can we to improve the
recommendation quality by using the project communication
history in addition to source code history?

In this paper we propose recommender system for expert location
with the aim to reduce delays of finding the right person whenever
somebody needs assistance during coding. Our approach uses the
communication history of the project (the developer’s mailing list)
in addition to usual source code history. In the sections that
follow, we present the related works, our approach and its
evaluation through an experiment, and the final remarks.

2. RELATED WORKS
The Expertise Browser [19] uses experience atoms (EA), basic
units of experience, as the basis for recommending experts.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
RSSE’10, May 4, 2010, Cape Town, South Africa.
Copyright © 2010 ACM 978-1-60558-974-9 /10/05…$10.00.

41

Experience atoms are created by mining the version control
system for the author of each file revision and the changes made
to the file. Rules of thumb were applied to identifying candidates
which had expertise on a particular software project and, more
specifically, a piece of source code. A simple counting of
experience atoms in question is then used to determine the
experience in that area.
Expert Finder [6] is a tool to locating an expert through the use of
existing organizational information. In practice this information is
the documentation generated during a project or similar activity.
Expertise models are created using text modeling algorithms
based on the vector space model to analyze the documents. There
are filters that receive the results of analysis and select the people
most related with a specific document.
Expertise Recommender [7] uses software artifacts to recommend
experts to people asking for help. The tool uses both past
interacting between the people in the project and the artifacts
history. The recommendation is done after filtering by
organizational, social and personal preference criteria.
STeP_IN [5] recommend a set of developers with expertise in a
specific method of a Java source code. The set of experts is based
on the analysis of the source code and the contacts in the mailbox
of each developer. The tool recommends the developers that have
some usage of the method, and also recommends archived
discussions about a specific piece of source code but did not use
the content of the archived discussion to recommend the experts.
None of the approaches indeed analyze the content of the
communication among team members of the project which we
find could be very valuable. Our approach analysis the content of
communication to improve the usual recommendations based on
the source code history and the relationship (technical
dependency) between the source code.

3. CONSCIUS EXPERT RECOMMENDER
SYSTEM
Conscius uses the source code, its history, the project
documentation (javadoc) and the developer’s mailing list archives
to recommend source code experts. Differently of Ye and
colleagues, that use the mail archives only to build a social
network for each developer and recommend people inside it, our
tool analyses the content of each email in the mailing list to
identify its subject and related source code.

The mailing list archive is very valuable because the developers
tend to write about things they are working on or have knowledge
about. Using mining algorithms we can relate the emails to
documentation or source code.

From the inputs we build the following relationships: (1)
developer–source code, from the source code history; (2) source
code – source code, from the technical dependency between
them; (3) developer – developer, from the threads of the mailing
list; and (4) documentation – source code, from the
documentation.

The chosen inputs can indicate the knowledge owners from these
elements since its inception. The relationship among the projects
activities, its artifacts and the communication supply to Conscius
the needed information to infer who is the expert in each part
(package, class, method) of the software.

3.1 Approach
Instead of write to mailing list seeking for help, the user writes the
message in the Conscius tool. Our tool looks for referenced
classes in the message and finds classes depending on those.
The Classifier component identifies the keywords in a Javadoc or
message ignoring the stopwords and invalid characters [10]. It
computes the frequency of each keyword on the text.
The Knowledge component receives the list of keywords from the
Classifier and analyzes and associates them with one top-level
Javadoc package. This component does automatic classification
using the technique of fuzzy similarity described by Galho [11] to
determine the score of similarity among the list of keywords from
one message and the list of keywords from one Javadoc package.
We compute the equity score (gi) for each common keyword
between the two lists (from the message and from the Javadoc
packages) with the Formula 1. The parameters a and b are the
frequency of the common keyword in each list. The resulting
score must be in the interval [0,1]. Values upper than 1 are
normalized to 1; values lower than 0 are normalized to 0.

Where:

Formula 1. Equity score [11]
After the end of the computation of equity score among the
keywords, we compute the similarity score between the message
and the top-level Javadoc package with the Formula 2.

Where:
gs is the similarity score between X and Y.
gi is the equity between the weights of h keyword (weight a for
document X and b for document Y);
h is an index for the commons keywords;
k is the total number of common keywords.

Formula 2. Similarity score [11]
This computation is repeated for each top-level Javadoc package
in the project. The package with the highest similarity score is
chosen. For now on, we are going to refer to this package as the
knowledge of the message.
The Recommender component identifies the people most
qualified to reply the original message from the user. The
component searches the users that sent emails with the requested
knowledge (identified in the step above) and computes his
communication score. The developer increases his score for each
message containing the knowledge. We call this C Heuristic.
The next step in the Recommender component is to compute the
development score of the developers in each class referenced in
the message and each class that depends on them. The developer
increases his score for each commit on any these classes in the
source code version control system. This as an extension to “Line
10 Rule” of McDonald and Ackerman [16] and we call this
heuristic D Heuristic.

42

The final score for each developer is the sum of the
communication score and the development score. The developers
with highest score are recommended as experts and receive the
original message.

4. PRELIMINARY EVALUATION
The experiment planning followed the model proposed by Wohlin
and colleagues [12] and adapted by Brito [13]. There are five
activities: definition, planning, operation, analysis and
interpretation, and presentation.

4.1 Definition
The goal of this experiment is to analyze the Conscius tool for the
purpose of evaluating it with respect to its recommendation
efficiency of the tool from the point of view of developers looking
for help in the context of implementation phase of distributed
software development projects.

4.2 Planning
The purpose of the experiment is to assess the viability to use the
project communication to recommend experts for distributed
software development. The Apache Lucene-Java was chosen
because it’s written in Java, is open source software and has its
developers spread worldwide.

4.2.1 Subjects
All the developers that sent at least one email to the developer’s
mailing list of the project.

4.2.2 Hypotheses
Q1. Does the tool recommend efficiently using only the project
communication history?
Q2. Does the tool improve the recommendation quality by using
the project communication history in addition to source code
history?
Three metrics where collected to assess the quality of the
recommendations of the tool:
M1. Precision: the number of correct recommendations of the
tool divided by the total number of recommendations of the tool
[14];
M2. Recall: the number of correct recommendations of the tool
divided by the number of people which actually replied the
message in the mailing list [14].
M3. Accuracy: the number of the set of recommendations with at
least one correct recommendation divided by the total number of
the set of recommendations [15].
The Q1 is answered comparing the values of precision, recall and
accuracy from C Heuristic and the values of D Heuristic. In the
same way Q2 is answered comparing the values of precision,
recall and accuracy from C and D Heuristics combined and the
values of C Heuristic.

4.2.3 Independent variables
The independent variables are the tool, the mailing list archive,
the source code and the source code history.

4.2.4 Dependent Variable
The dependent variable is the quality of the recommendation of
the tool. The quality will be measured through the metrics
precision, recall and accuracy.

4.2.5 Internal validity
The mailing list has the problem that not all emails sent are
directly related to questions about the implementation nor all
repliers are truly experts on the email subject, or the emails do not
have enough text to allow the identification of the correct
knowledge. This is minimized because we will be using a big
quantity of emails (6 months of archives) and this quantity
guarantees good internal validity.

4.2.6 External validity
In this experiment the results may be affected by the chosen
project because of the nature of the open source software
development, where participants are free to contribute whenever
they are willing to do so, differently from the enterprise scenario.
However the external validity of the study is considered sufficient
to assess the quality of the recommendations of the tool. The
experiment replication depends only from the necessary inputs.

4.2.7 Conclusion validity
The conclusions will be draw by the use of analysis of precision,
recall and accuracy of the recommendations.

4.2.8 Instrumentation
The inputs of the experiment were the developer’s mailing list
archives, the source code and its history in the versioning control
system (VCS), and the Javadoc. There were 6.327 emails sent
from 292 different participants in the year 2008. Among the
participants 17 of them had at least one commit in the VCS. The
VCS had 10.764 records from September 2001 to July 2009.

4.3 Operation
We selected all the threads in the mailing list from January 2009
to June 2009 with at least one reply. The selected threads (375)
where grouped by months. All the threads accounts for 1187
emails including questions (the first email in thread) and replies.
In order to also experiment the evolution of the software
implementation together with communication made about it, six
versions of source code, representing each month above, where
extracted from the VCS. In order to Conscius recommend the
experts, the questions and the source code are from the same
month.
We run three configurations of Conscius varying the enabled
heuristics. The first configuration had the two heuristics enabled
as described in the section 3.1. The second configuration had the
C Heuristic disabled and D Heuristic enabled, so the
communication score was always 0. The third configuration had
the C Heuristic enabled and D Heuristic disabled, so the
development score was always zero. In all the runs the tool always
recommended three experts.

5. ANALYSIS AND INTERPRETATION
At the end of the experiment execution the recommendations of
the tool where collected to compute the three metrics – precision,
recall and accuracy.

5.1 Assessing the quality of recommendations
for each heuristic
The purpose of this analysis is to assess whether the
communication is more relevant than the VCS history for
identifying and recommending experts. The table 1 shows the
mean values of the metrics collected during the operation.

43

Table 1 – Comparing the C and D Heuristics

 C Heuristic D Heuristic

Precision 27,38% 20,71%

Recall 46,06% 33,73%

Accuracy 68,53% 54,13%

All the values of the C Heuristic for precision, recall and accuracy
are higher than the values of the D Heuristic, thus Q1 is true. A
possible explanation is that the D Heuristic could be too simple
but it demonstrated to be quite competitive in comparison with
some others algorithms [17].

5.2 Improving the quality of recommendation
The purpose of this analysis is to assess the strength of combining
both heuristics to recommend the experts as described in section
3.1. The table 2 shows the mean values of the metrics collected.

Table 2 – Comparing the combined heuristics
against the D Heuristics

 C + D Heuristics D Heuristic

Precision 27,29% 20,71%

Recall 46,49% 33,73%

Accuracy 69,07% 54,13%

The results for the combined heuristics are also higher than the D
Heuristics alone, thus Q2 is also true. Surprisingly the results of
the combined heuristics did not improve the results of the C
Heuristic alone in the previous section as we intuitively expected.
We believe this occurs because of the way we combine the scores
of C and D Heuristics. At least the results did not go worse.

6. CONCLUSION AND FUTURE WORKS
The proposed tool Conscius can find the expert in the source code
level from the descriptions of faced difficulties during the
implementation of the software, the source code and its history,
and mainly from the communication history and its content. We
believe that distributed teams can improve their communication
and awareness with this tool because they can easily locate the
right person to talk.

Our experiment showed evidence of the potential value of
communication content as a source to expert location. The results
even overcome results relying only on the source code history.
We are planning to contact the Apache Lucene-Java’s developers
to check the results with them, so we can assess their opinions on
the quality and utility of the recommendations.

This evidence enables us to generate new hypotheses about the
value of the content already available in other textual sources such
as bug reports and wikis. Future works also include more
exploration on the potential of email communication as a source
for expert location, such as using metrics of social network
analysis or more elaborated sociotechnical analysis – the social
call graph – to improve our heuristics [18].

The current design of the tool only allows the message be
classified by one knowledge. We did not have enough time to
analyze all 7500 email messages in the experiment but we
presume a part of unsuccessful recommendation were because our

design limitation. We are also working to improve this area to
allow multiple classifications.

7. REFERENCES
[1] Carmel, E. (1999). Global Software Teams: Collaborating

Across Borders and Time Zones. Prentice Hall.
[2] Espinosa, A. J. and Carmel, E. 2004. “The Effect of Time

Separation on Coordination Costs in Global Software Teams:
A Dyad Model”. In Proceedings of the Proceedings of the
37th Annual Hawaii International Conference on System
Sciences, IEEE Computer Society, Washington, DC, USA.

[3] Espinosa, J., Slaughter, S., Kraut, R., and Herbsleb, J. 2007.
Team Knowledge and Coordination in Geographically
Distributed Software Development. J. Manage. Inf. Syst. 24,
1 (Jul. 2007), 135-169.

[4] Herbsleb, J. D. (2007). Global software engineering: The
future of socio-technical coordination. FOSE '07: 2007
Future of Software Engineering, pages 188–198.

[5] Ye, Y.; Nakakoji, K. and Yamamoto, Y. (2007). "Reducing
the cost of communication and coordination in distributed
software development", Lecture Notes in Computer Science,
2007, LNCS 4716, 152 – 169.

[6] Sim, Y. and Crowder, R. (2004). "Evaluation of an Approach
to Expertise Finding", In PAKM, Seiten 141–152.

[7] McDonald, D. W. and Ackerman, M. S. (2000) "Expertise
recommender: a flexible recommendation system and
architecture", In CSCW ’00: Proceedings of the 2000 ACM
conference on Computer supported cooperative work, Seiten
231–240, New York, NY, USA. ACM.

[8] Hogan, B. (2006) “Lessons Learned from an eXtremely
Distributed Project”, In Proceedings of the conference on
AGILE 2006, publisher IEEE Computer Society.

[9] Trindade, C. C., Moraes, A. K. O., and Meira, S. R. L.
(2008). Communication in distributed software teams: a
systematic review (in Portuguese). In ESELAW '08:
Proceedings of the 5th Experimental Software Engineering
Latin American Workshop.

[10] Wives, L. K. (1999) Um Estudo sobre Agrupamento de
Documentos Textuais em Processamento de Informações não
Estruturadas Usando Técnicas de Clustering. Dissertação de
Mestrado, PPGC/UFRGS, Porto Alegre (RS).

[11] Galho, T. S.; Moraes, S. M. W. (2004) Categorização
Automática de Documentos de Texto utilizando Lógica
Difusa. Logos (Rio de Janeiro), Canoas, v. 15, n. 1, p. 91-
104, 2004.

[12] Wohlin, C.; Runeson, P.; Host, M.; Ohlsson, C.; Regnell, B.
& Wesslén (2000), “A. Experimentation in Software
Engineering: an Introduction Kluver Academic Publishers”.

[13] Brito, K. S (2007). “LIFT: A Legacy InFormation retrieval
Tool Universidade Federal de Pernambuco”.

[14] Minto, S. & Murphy, G. C. (2007) “Recommending
Emergent Teams”, In: ICSEW '07: Proceedings of the 29th
International Conference on Software Engineering
Workshops, IEEE Computer Society, 2007, 5.

44

[15] Kagdi, H. H.; Hammad, M. and Maletic, J. I. "Who can help
me with this source code change?" ICSM, IEEE, 2008, 157-
166.

[16] McDonald, D. W. and Ackerman, M. S. (2000) "Expertise
recommender: a flexible recommendation system and
architecture", In CSCW ’00: Proceedings of the 2000 ACM
conference on Computer supported cooperative work, Seiten
231–240, New York, NY, USA. ACM.

[17] Da Tindade, C. C. 2009. PRESLEY: uma ferramenta de
recomendação de especialistas para apoio à colaboração em
desenvolvimento distribuído de software. Dissertação de
Mestrado, Centro de Informática, Universidade Federal de
Pernambuco, Recife, Brasil.

[18] de Souza, C. R., Quirk, S., Trainer, E., and Redmiles, D. F.
2007. Supporting collaborative software development
through the visualization of socio-technical dependencies. In
Proceedings of the 2007 international ACM Conference on
Supporting Group Work (Sanibel Island, Florida, USA,
November 04 - 07, 2007). GROUP '07. ACM, New York,
NY, 147-156.

[19] Mockus, A. and Herbsleb, J. D. 2002. Expertise browser: a
quantitative approach to identifying expertise. In Proceedings
of the 24th international Conference on Software
Engineering (Orlando, Florida, May 19 - 25, 2002). ICSE
'02. ACM, New York, NY, 503-512.

45

