
Software Engineering in Practice: Building Software
Factories

Jones Albuquerque

DEINFO - UFRPE
Rua Dom Manuel de Medeiros, s/n

Dois Irmãos – Recife - PE
+55 81 3320.6491

joa@ufrpe.br

Silvio Meira

C.E.S.A.R / CIn-UFPE
Caixa Postal 7851 – 50732-970

Cidade Universitária – Recife - PE
+55 81 3425.4714

silvio@cesar.org.br

Alan Kelon

CIn-UFPE
Caixa Postal 7851 – 50732-970

Cidade Universitária – Recife - PE
+55 81 3425.4714

akom@cin.ufpe.br

ABSTRACT

Practical issues of real software development have not been
considered in Software Engineering Graduate Programs.
Traditionally, the programs only present to their students some
new technology or recently scientific aspect but do not present
real aspects in practice of software development. This position
paper presents an experimental initiative on incorporate practical
issues of software development using Software Factory concepts
in a graduate course. Real Software Factories, with real projects,
with real deliverables are setting up in four months. Traditionally,
the term Software Factory has the erroneous connotation that
software development is comparable to mass-production of
industrial products, and this is not the case. We present a proposal
to build real Software Factories and present and discuss its results.

Keywords

Education, Software Engineering, Open-Source Development
Process, Software Factories.

1. INTRODUCTION
The term “Software Engineering” was originated in 1965 but first
come into currency in 1967 when study group on Computer
Science of the NATO Science Committee called for an
international conference on the subject. As Brian Randell and
Peter Naur point out in the introduction to their edition of the
proceedings, “The phrase ‘software engineering‘ was deliberately
chosen as being provocative, in implying the need for software
manufacture to be [based] on the types of theoretical foundations
and practical disciplines[,] that are traditional in the established
branches of engineering.”[3]. This sentence opens several areas
of potential disagreement. Just what are the “types of theoretical
foundations and practical disciplines that are traditional in the
established branches of engineering”? What would their
counterparts look like for software engineering? What role does
engineering play in manufacture? Could one assign such a role to
software engineering? Can software be manufactured?

Those questions had no definitive answers in the conference
proceedings and among the future Software Engineers. If one
could not define “Software Engineering”, how could one point to
its practice? In 1971, at IFIP, F. L. Bauer put in his report on
“Software Engineering”: What have been the complaints?

Typically, they are:

1. Existing software production is done by amateurs

(regardless whether at universities, software houses or

manufactures);

2. Existing software development is done by tinkering (at

the universities) or by the human wave (“million

monkey”) approach at the manufacturer´s;

3. Existing software is unreliable and needs permanent

“maintenance”, the word maintenance being misused

to denote fallacies which are expected from the very

beginning by the producer;

4. Existing software is messy, lacks transparency, prevents

improvement or building on (or at least requires too

high a price to be paid for this);

5. Last, but not least, the common complaint is: Existing

software comes too late and at higher costs than

expected, and does not fulfill the promises made for it.

In this way, Bauer observed that “Software Engineering” seems to
be well understood. Traditionally, these had been the concern of
engineers, rather than of scientists [1]. Nowadays, these
complaints are yet present in Software Industry “reports” and
Academic “papers” [2].

2. PRACTICAL RESULTS: BUILDING

REAL SOFTWARE FACTORIES
Building Software Factories courses expose students to real, team-
oriented development in a software development organization
staffed and managed by students under the guidance of faculty.
Several students are professional developers, certified
programmers and work in industry, too. These courses are hands-
on courses that require student participation in one of the factories
defined. The class meets once each week. One class meeting lasts
two hours and is usually led by the professor.

During these meeting, the professor introduces concepts that are
relevant to the current work being performed in the factories and
addresses problems faced by the students ate the factories. The
professor is a “facilitator” who does not decide right or wrong, but
instead facilitates learning the pitfalls and peaks in development
process. This is not an innovative initiative as presented in [5].
The innovative aspect is in the time that the factories are build:
four months!

The projects for each software factory are chosen by professors
and software factory managers. The demands are characterized by
RFP – Request For Proposals and have one client per project.
These projects are in collaboration with C.E.S.A.R.
(http://www.cesar.org.br) and its partners which reflect current
trends in industry and makes its professionals (which are students
in the course) motivated [6].

The latest course edition can be found at
http://www.fabricadesol.com/in953. In this site there are papers,
slides, RFP´s, software factories sites, and experience papers
published by students relating their experience in the course. A
typical calendar to build the factories is:

1. Concepts and definition – 1 month;

2. RFP to calibrate the factories – 1 month;

3. Real RFP to evaluate the factories – 2 months.

Since 2003, this course builds seventeen software factories and
we investigate how these factories works in several aspects [7]:
process, people, systems, development methodology [9], and how
their products are incorporated by clients which are their real
clients during the course [8].

The more recently software factories which are hybrid-open
source software communities [4] have their sites published at:

1. X-Centrix

https://garage.maemo.org/projects/x-centrix/

2. Sunrise

http://sunrise.gforge.fabricadesol.com/br/index.php

3. Cooper

http://www.protopage.com/protcsf

4. J.O.S.E.

http://josefactory.org/

5. T.R.E.N.D.

http://gforge.fabricadesol.com/projects/pmk/

6. O.S.S.O.

http://www.protopage.com/ossofactory

7. OpenMind

http://openmind.gforge.fabricadesol.com/

3. CONCLUSIONS
In recent years, there have been a number of experiences with
software factories reported in the literature which, although dense
in a number of ways, have been lacking in what regards the
discussion of the stages of definition and setting up of factories
themselves.

This work discusses a number of issues related to the conception,
implementation and improvement of real software factories and,
as a result of a real life experiment, also points to a number of
lessons learned, which can very likely be replicated within similar
contexts.

4. REFERENCES
[1] I. Aaen, P. Botcher, and L. Mathiassen. Software factories:

Contributions and illusions. In Twentieth Information
Systems Research Seminar, Scandinavia, Oslo, 1997.

[2] J. H. Johnson. Micro projects cause constant change.
Technical report, The Standish Group International Inc,
2001. CHAOS Report.

[3] M. S. Mahoney. The roots of software engineering.
Technical Report CWI Quarterly 3-4, Princeton University,
1990. pp. 325-334.

[4] S. Sharma. V. Sugumaran, and B. Rajagopalan. A framework
for creating hybrid-open source software communities. Info
Systems, 12:7-25, 2002.

[5] J. D. Tvedt, R. Tesoriero, and K. A. Gary. The software
factory: Combining undergraduate computer science and
software engineering education. IEEE, 2001.

[6] K. Wiegers. Creating a software engineering culture. In
Software Development. Process Impact, July 1994.

[7] A. Kelon, S. Meira and J. Albuquerque. Building real F/OSS
software factories: How to create development communities
around outside requirements. In St.Amant, K. and Still, B.
(Eds), Handbook of Research on Open Source Software:
Technological, Economic, and Social Perspectives. Idea
Group Reference. 2007.

[8] V. C. Garcia et. al. From specification to the
experimentation: A software component search engine
architecture. In the 9th International Symposium on
Component-Based Software Engineering (CBSE 2006),
Lecture Notes in Computer Science (lncs), Mälardalen
University, Västerås near Stockholm, Sweden, 2006.

[9] A. P. Cavalcanti, et.al. Towards an Open Source Software
Factory. 2nd Experimental Software Engineering Latin
American Workshop, Uberlândia, Brazil, 2005.

