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Abstract—Newcomers in a software development project
often need assistance to complete their first tasks. Then a
mentor, an experienced member of the team, usually teaches
the newcomers what they need to complete their tasks. But,
to allocate an experienced member of a team to teach a
newcomer during a long time is neither always possible nor
desirable, because the mentor could be more helpful doing
more important tasks. During the development the team
interacts with a version control system, bug tracking and
mailing lists, and all these tools record data creating the project
memory. Recommender systems can use the project memory to
help newcomers in some tasks answering their questions, thus
in some cases the developers do not need a mentor. In this paper
we present Mentor, a recommender system to help newcomers
to solve change requests. Mentor uses the Prediction by Partial
Matching (PPM) algorithm and some heuristics to analyze the
change requests, and the version control data, and recommend
potentially relevant source code that will help the developer
in the change request solution. We did three experiments to
compare the PPM algorithm with the Latent Semantic Indexing
(LSI). Using PPM we achieved results for recall rate between
37% and 66.8%, and using LSI the results were between 20.3%
and 51.6%.

Keywords-recommender systems; software engineering; soft-
ware maintenance; information theory;

I. INTRODUCTION

Newcomers in a software development project often need

assistance to complete their first tasks, because they need

to learn how the project works, its architecture, the de-

velopment process, and how to use some tools to become

productive. Then a mentor, an experienced member of the

team, usually teaches the newcomers what they need to

complete their tasks [1]. To help, the mentor talks to the

newcomer, give him tips to solve problems, and usually

show source code examples to teach how to do something.

However the cost to take an experienced developer to his

main tasks to teach a newcomer is high, then sometimes it

is not possible to allocate someone as a mentor for a long

period of time.

The team interacts with version control system, bug

tracking and mailing lists during the development, and all

of these tools record artifacts creating the project memory.

Recommender systems can use the project memory to help

newcomers in some tasks answering their questions, thus in

some cases the developers do not need a mentor, since they

can ask to the computer.

In this paper we present Mentor, a recommender system

to assist newcomers to solve change requests recommending

source code files. Mentor uses the Prediction by Partial

Matching (PPM)[2] algorithm and some heuristics to analyze

a change request and the data of version control systems, and

then recommend potentially relevant source code that will

help the developer in the change request solution.

We begin the paper with an overview of related work. We

then describe in details the Mentor recommender system.

We continue by presenting three experiments to evaluate the

tool, each one using a different open source project, and

their results. We conclude with a discussion of the results,

and future research directions.

II. RELATED WORK

The Hipikat [3] assists newcomers in a software develop-

ment project recommending source code, change requests,

mailing list messages, documentation and people informa-

tion. It creates relations between the artifacts, for example,

link source code modified to solve a change request with

the change request. This relation is used by Mentor too,

but the tools use different approaches to link artifacts. The

Hipikat uses the Latent Semantic Indexing (LSI) algorithm

to find similarity among textual artifacts. According to the

authors, the LSI algorithm is the bottleneck of the system,

because it is slow to use LSI in a system with a big number

of artifacts. The Mentor uses PPM to find similarity, then

we intend to obtain better recommendations than LSI with

a good performance, even with many change requests.

Codebook [4] is a framework for mining the data of

project repositories. It uses a graph with relations between

people and artifacts, an approach very similar to Hipikat.
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The Codebook paper presented two applications using the

framework: the Hoozizat, a tool to find experts and the Deep

Intellisense, a Visual Studio add-in that shows events ordered

chronologically related to a symbol. The Codebook could be

used to recommend source code related to a change request,

if the graph has edges linking these kinds of artifacts.

The system proposed by Moin and Khansari [5] also

recommends source code related to change requests. The

tool uses the Support Vector Machine (SVM) classifier

[6] to find similar change requests solved earlier and then

recommend the source code modified to solve these similar

change requests as the solution of an open change request.

The system has a crucial difference to the Mentor, because

it recommends whole directories with source code files, and

Mentor recommends files directly. To recommend directories

may not help the developers, because the directories may

have a lot of files.

III. MENTOR

Mentor is a tool that manages change requests and makes

recommendations of source code related to a change request.

The tool makes recommendations assuming similar

change requests have similar solutions. Thus, to find the

source code files related to an open change request, the tool

looks for similar change requests that were solved in the

past and recommends the files changed to solve them as

the related files of the open change request. The tool ranks

the solutions by the similarity of the change requests, then

the files modified to solve the most similar change request

appears first, the files of the second most similar change

request appears next, and so on.

The Mentor recommendations are independent of pro-

gramming language and independent of the language used

to describe the change requests. Then, it does not matter if

the project is written in C, C++, Java or mix programming

languages, or if the developers using English or Portuguese

to describe the change requests, the algorithms used in the

tool work in all these cases. This is a very good point of

Mentor, because different teams, developing different kinds

of projects, can use the same tool and obtain useful results.

The tool is based in the MVC (Model-View-Controller)

architecture and two components were created to work on

the recommendation tasks - Matcher and Similarity Assigner

- they interact directly with the Model layer reading and

writing data in the database.

A. Similarity Assigner

The Similarity Assigner component creates the similarity

relations among change requests. It analyzes each change

request stored in the database, and it uses the PPM algorithm

to calculate similarity between them. The process to identify

similar change requests has two steps: model creation and

classification.

Context k=1

h
o 1 1/2

escape 1 1/2

o
c 2 2/3

escape 1 1/3

c
u 2 2/3

escape 1 1/3

u
s 2 2/3

escape 1 1/3

s
p 1 1/2

escape 1 1/2

p
o 1 1/2

escape 1 1/2

Context k=0

h 1 1/16

o 2 2/16

c 2 2/16

u 2 2/16

s 2 2/16

p 1 1/16

escape 6 6/16

Table I
PPM MODEL AFTER PROCESS THE STRING “HOCUSPOCUS”.

In the first step, a PPM model is created for each change

request stored in the system. It is made using the text of the

change request summary, description and comments made

by developers concatenated in only one string. The PPM

model is a statistical model, i.e., the model is made by

probabilities according to the occurrence of the text symbols.

The model also considers the context of the symbols,

i.e., the k previous symbols of the current symbol. Using

contexts, the probability of a symbol does not just depend

on its frequency, but it depends on the context in which it

occurs too. For example, the probability of the letter “h”

appears in an English text is 5%. However, if the current

symbol is the letter “t”, there is a greater probability that

the next symbol is the letter “h”, about 30%, because, in

English, the letters “th” often appear together [2].

There is a special symbol called escape in the PPM

algorithm, it is added to the model in a context whenever a

symbol appears for the first time in that context. This special

symbol is important to calculate the entropy of a message,

because it represents the probabilities of all the symbols that

do not appear in the model.

The Table I shows a PPM model using a maximum

context K = 1 for the string “hocuspocus”. N is the number

of times a symbol appears in a context and P is the estimated

probability for this symbol.

We use the entropy to measure how a change request is

similar to other. The entropy is calculated using the PPM
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model. Thus, to calculate the similarity between a change

request A and a change request B, we need to create a PPM

model of A and then calculate the entropy of B using the

model of A. The result will give to us if they are similar or

not.

Mentor uses two equations to find the entropy. The Equa-

tion (1) is the mathematical definition for the information I
of a symbol x [7].

The entropy H of a text is the mean of the information

produced by the symbols of this text. The Equation (2)

represents the averaging of information of each symbol xi

of a message of size N . It is easy to notice that the value

of the entropy depends directly of the probabilities of the

model used.

The tool calculates the information of each symbol of

the summary, description and comments concatenated of

the change request B using the probabilities of the change

request A model, sum them all and divide by the message

length.

A low entropy value means that the change requests are

similar, a high value means the opposite, that the change

requests are not similar.

[h]I(x) = log2(
1

P (x)
) (1)

[h]H =
1

N

N∑

i=1

I(xi) (2)

B. Matcher

The Matcher component analyzes every change requests

stored in the database and the data of the version control

used in the project, and it uses a heuristic to discover and

store the relation between the revisions and change requests

in the database.

The heuristic used by the Matcher works as follows.

Usually in software development project the developers use

a convention to create commit messages. When a developer

sends the modifications to solve a change request, he could

attach a message like “issue #1234 solved”, where #1234 is

the ID of the change request solved. Thus, the Matcher uses

regular expressions to scan the commit messages looking for

some patterns like these. When it finds a pattern, a relation

between a change request and a revision is stored in the

database.

C. Usage

The Figure 1 shows the Mentor initial screen. The tool

displays a list of the change requests IDs and its summaries

ordered by modification date. This approach is very common

in bug tracking systems, because the users can browse

quickly among the change requests and read the short

description to know what the change request subject is.

Clicking on a change request, the Mentor change its

screen to the change request details, it is the screen of the

Figure 1. Mentor index

Figure 2. In this screen the developer can analyze the change

requests details, in many cases only the information of the

summaries is not sufficient to inform the developer what he

needs to start to solve the problem.

Figure 2. Change request details

Below the change request summary there is a link high-

lighted with the text “recommend solutions”. Clicking on

this link, the Mentor will recommend to the developer a list

of similar change requests that were solved in the past. The

figure 3 shows the similar change requests of the request

#7300 of the project Hadoop Common.

Figure 3. Similar change requests

The most similar change request according to the tool is
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the change request #7001. Clicking on the change request in

the list, the Mentor shows the revisions related to the change

request and the source code files changed in these revisions.

IV. EXPERIMENT

We compared PPM, the technique used in Mentor, with

LSI, the technique used in Hipikat [3] to evaluate which

technique is more efficient to find similarity among texts.
We create other version of the Similarity Assigner com-

ponent to use the LSI instead PPM, thus, we change only the

algorithm to find similarity, the rest of the system remained

exactly the same. We use the LSI implementation of the

Gensim library1 to generate the text similarity relations.

A. Metrics
We used three following metrics in the experiment:

precision[8], recall[8] and recall rate[9], because they are

largely used in the literature in similar experiments.

B. Hypotheses
For the experiments the null hypothesis are:

• Hn1 - PPM precision = LSI precision
• Hn2 - PPM recall = LSI recall
• Hn3 - PPM recall rate = LSI recall rate
And the alternative hypothesis are:

• Ha1 - PPM precision > LSI precision
• Ha2 - PPM recall > LSI recall
• Ha3 - PPM recall rate > LSI recall rate

C. Instrumentation
We did three experiments, each one using data of a

different open source project. The projects used are:

• GTK+: 503,161 source code lines in 1,348 files;

• GIMP: 737,835 source code lines in 3,293 files;

• Hadoop: 613,481 source code lines in 1,003 files.

We filter some change requests in the experiment. First,

we selected only the minor and trivial change requests,

because they are simple tasks that a newcomer could solve.
Some change requests imported do not have any version

control revision associated, because there is no revision

referencing them in the commit messages. These requests

were removed from the experiment too.
Also, the solution of some change requests may does not

have intersection with any other change request solution.

This is a problem, because it is impossible to recommend

a correct solution if there is not any change request that

changes the correct files. For example, if a change request

(A) was solved modifying a file (X), and in all the rest of

the change requests, no one was solved modifying the file

(X), it is impossible to recommend the correct solution of

change request (A). The requests like the request (A) were

removed from the experiment too.
The Table II shows the amount of change requests and

revisions used in the experiment, and the period of time.

1http://nlp.fi.muni.cz/projekty/gensim/

Project Data Amount Period

GTK+
change requests 374 06/2001 -

revisions 26805 08/2008

GIMP
change requests 496 06/2001 -

revisions 29708 09/2008

Hadoop
change requests 250 06/2009 -

revisions 3049 06/2011

Table II
EXPERIMENT DATA

D. Validities

All the variables in the experiments are static, we change

only the similarity algorithm to compare PPM and LSI. In

other words, in the experiments we change the similarity

algorithm applied in the static variables and observe the

metrics.

To reject or not the hypotheses we use two statistical

tests, the Wilcoxon signed-rank test for matched pairs for

precision and recall, and a proportion test for the recall rate

[10].

We used three different projects to avoid mistakes in the

experiment conclusion. If we used only one project, maybe

the results were true only in this specific case, then we would

not be able to conclude if the PPM is better or not compared

to LSI. However, using three projects, written in different

programming languages and with purposes very distinct, we

try to avoid this threat.

E. Execution

For each experiment, we import the project data using

some scripts to load the data from different formats directly

in the database of the system and run the processes to

generate similarity and change requests-revision relations,

one time with PPM and other time with LSI.

Each change request received from one to ten recom-

mendations of similar change requests, and we calculated

precision, recall for each recommendation. For example,

for one recommendation (A), first only one change request,

and the files changed to solve it, is recommended, then the

metrics are calculated. After that, the system recommends

other change request, the second most similar. Now, the

metrics are calculated using the files of the first and of

the second change request. This process continues until

recommends ten change requests and their files. In the end,

we calculated recall rate for set of recommendations.

All change requests used in the experiment were solved

previously by the developers of the projects, however, we did

not use this information during the recommendation process.

Thus, to analyze if a recommendation is right or wrong, we

only need to compare the files recommended by the system

with the files of the real solution.
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The calculation of the metrics precision and recall is

realized for each change request, then, for example, rec-

ommending one similar change request we get many values

of precision and recall, one for each change request that

receives recommendation. The same happens to two, three,

four similar change requests recommendations, and so on.

The results presented for the precision and recall in the tables

are the means of the results of all change requests. We use

this approach to simplify the data presentation.
The tables III, IV and V show the results of the three

experiments. The first column shows the number of similar

change requests recommended, and the next columns show

the mean of the metrics precision and recall, and recall rate

respectively.

PPM

N precision recall recall rate

1 17.8476% 18.6704% 22.1925%

5 7.7356% 37.7189% 44.1176%

10 4.9950% 46.5235% 53.7433%

LSI

N precision recall recall rate

1 2.6744% 1.7342% 3.2086%

5 1.7887% 8.0765% 10.6952%

10 1.1780% 15.9488% 20.3209%

Table III
GTK+ EXPERIMENT RESULTS

PPM

N precision recall recall rate

1 11.3363% 11.5758% 21.2%

5 5.987% 32.9433% 53.2%

10 4.2510% 45.9387% 66.8%

LSI

N precision recall recall rate

1 6.9959% 7.9908% 15.6%

5 3.3429% 19.9785% 36%

10 2.5328% 32.7126% 51.6%

Table IV
HADOOP EXPERIMENT RESULTS

V. DISCUSSION

All results using PPM to find similar change requests

were better than the results using LSI. Let’s analyze the

hypotheses always using the case that we recommend ten

change requests.
The experiment using GTK+ had 4.9950% of precision

using PPM and 1.1780% using LSI. The Wilcoxon signed-

rank test for matched pairs with 0.05 of significance returns

PPM

N precision recall recall rate

1 7.5013% 7.1029% 13.1048%

5 3.7490% 16.87% 28.0242%

10 2.6758% 24.6009% 37.0968%

LSI

N precision recall recall rate

1 5,4571% 5.6412% 8.871%

5 3.0886% 13.9663% 22.1774%

10 1.8808% 18.5938% 29.4355%

Table V
GIMP EXPERIMENT RESULTS

T = 6640, z = −4.9494 and the critical z is +-1.959962,

then, we can reject the null hypothesis Hn1. For recall in

the GTK+ project, the PPM had 46.5235% and LSI had

15.9488%. The Wilcoxon signed-rank test for matched pairs

with 0.05 of significance returns T = 3096, z = −5.9436
and the critical z is +-1.959962, then, we can reject the null

hypothesis Hn2. For the recall rate in GTK+ project, the

PPM had 53.7433% and LSI had 20.3209%. The proportion

test with 0.05 of significance returns P − V alue = 0, z =
9.4648 and the critical z is +-1.96, then, we can reject the

null hypothesis Hn3.

The experiment using Hadoop had 4.2510% of precision

using PPM and 2.5328% using LSI. The Wilcoxon signed-

rank test for matched pairs with 0.05 of significance returns

T = 11393, z = 4.4732 and the critical z is +-1.959962,

then, we can reject the null hypothesis Hn1. For recall in

the Hadoop project, the PPM had 45.9387% and LSI had

32.7126%. The Wilcoxon signed-rank test for matched pairs

with 0.05 of significance returns T = 11717, z = 22.0381
and the critical z is +-1.959962, then, we can reject the

null hypothesis Hn2. For the recall rate in Hadoop project,

the PPM had 66.8% and LSI had 51.6%. The proportion

test with 0.05 of significance returns P − V alue = 0.0005,

z = 3.4579 and the critical z is +-1.96, then, we can reject

the null hypothesis Hn3.

The experiment using GIMP had 2.6758% of precision

using PPM and 1.8808% using LSI. The Wilcoxon signed-

rank test for matched pairs with 0.05 of significance returns

T = 27454, z = 15.9605 and the critical z is +-1.959962,

then, we can reject the null hypothesis Hn1. For recall in

the GIMP project, the PPM had 24.6009% and LSI had

18.5938%. The Wilcoxon signed-rank test for matched pairs

with 0.05 of significance returns T = 13375, z = 14.4705
and the critical z is +-1.959962, then, we can reject the null

hypothesis Hn2. For the recall rate in GIMP project, the

PPM had 37.0968% and LSI had 29.4355%. The proportion

test with 0.05 of significance returns P − V alue = 0.0104,

z = 2.5607 and the critical z is +-1.96, then, we can reject
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the null hypothesis Hn3.

The recall rate is a very important metric in these ex-

periments, because the Mentor may make recommendations

of change requests that were solved modifying some correct

files, but also other files. This recommendation still be useful

for the developer, however, the precision and recall values

tend to low.

For example, the change request #7300 of Hadoop Com-

mon project was solved changing three .java files (Con-

figuration.java, TestConfiguration.java and StringUtils.java).

Using PPM, the most similar change request recommended

by Mentor was #7001, and it was solved changing seven

.java files, including Configuration.java. In this case, the

change request enters as a correct answer in the recall rate

calculation, but the precision was only 14.2%. Despite the

low value of precision, the recommendation of the seven

.java files may be very good, because a developer is likely

to open the TestConfiguration.java file when he finds the

Configuration.java file, for the reason that the first is the

test file of the second. Further, in the Configuration.java

there are many uses of methods of the class StringUtils,

then, a developer reading the code will open the StringUtils

file too. Using LSI the change request #7300 appeared as

the 8th most similar change request.

The Hadoop project follows a rigid commit message

guideline, the relation between a revision and a change

request is very clear. The GIMP project, that had low results,

does not follow clear rules to create commit messages.

However, the GTK+ project that had as good results as

Hadoop does not follow any clear rule too. So, the rigid

commit messages pattern may do not have so much influ-

ence, because the Matcher does a good job looking for the

change requests ID.

After the three experiments we can conclude that to use

PPM to get similarity among text is potentially better than

to use LSI.

VI. CONCLUSION

To move an experienced developer from his main tasks, to

act as a mentor may cause a delay in the project and increase

its cost. In this paper we presented a tool called Mentor that

tries to help the developers to solve change requests, and to

avoid moving experienced members from their tasks.

We ran three experiments to evaluate the tool comparing

PPM with LSI to find similarity and all null hypotheses were

rejected in the three experiments. Using PPM we achieved

results for recall rate between 37% and 66.8%, and using

LSI the results were between 20.3% and 51.6%.

There are many possibilities for future work. The first

is expanding the recommendations to other artifacts, for

example, messages of a mailing list or the documentation of

the project. They are made by text, then it seems possible

to use PPM to find similarity among all these artifacts.

The recommendation engine of Mentor could be inte-

grated in some project management systems. This way the

project does not need to change de tool to manage the project

and the Mentor will only add some important features

related to recommendation in the bug tracking system of

the management tool.

Other important work we need to do is evaluate the

Mentor using a case study. Developers using the tool could

show to us if the tool is really useful in real tasks of real

software projects.
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